Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis.
نویسندگان
چکیده
Gene expression profiling has revealed that cultured vascular endothelial cells (EC) respond to fluid mechanical forces by modulating the mRNA level of a large number of genes. However, differences between the gene arrays and the experimental conditions employed by different researchers make comparison between data sets difficult, and limit the interpretation of the results. Despite these problems, analysis of recent data indicates that the transcriptional response of cultured EC to low-shear disturbed flow conditions similar to those at atherosclerosis-prone areas is distinct from that elicited by atheroprotective high shear laminar flow, providing a molecular basis for the focal nature of atherosclerosis. Many of the genes altered by disturbed flow are involved in key biological processes relevant to atherosclerosis such as inflammation, cell cycle control, apoptosis, thrombosis and oxidative stress. Overall, the gene expression profiling data are consistent with the hypothesis of the hemodynamic etiology of atherosclerotic predilection, viz that at predilected areas in vivo the presence of low shear, non-laminar flow is sufficient to induce a gene expression profile that pre-disposes the endothelium to the initiation and development of atherosclerotic lesions.
منابع مشابه
Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کاملکاهش بیان ژنهای Tie1 و VCAM-1 در شرایط بیوزنی: استراتژی جدید برای مطالعه و درمان بیماری تصلبشرائین
Introduction: VCAM-1 and Tie1 are endothelial molecule and receptor, respectively that may participate in atherosclerosis disease. Endothelial cells are very sensitive to mechanical forces, including microgravity and the morphological and functional changes in this condition. To examine the effect of gravity on atherosclerosis disease, we analyzed the expression of VCAM-1 and Tie1 genes in micr...
متن کاملEffects of mechanical forces on signal transduction and gene expression in endothelial cells.
Fluid shear stress and circumferential stretch play important roles in maintaining the homeostasis of the blood vessel, and they can also be pathophysiological factors in cardiovascular diseases such as atherosclerosis and hypertension. The uses of flow channels and stretch devices as in vitro models have helped to elucidate the mechanisms of signal transduction and gene expression in cultured ...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملCurcumin as an Environmental Potent Antioxidant Decreases Risk of Arthrosclerosis
Background & Aims of the Study: Oxidative stress increases platelet-derived growth factor (PDGF) gene expression in endothelial cells that contributes to vascular dysfunction and atherosclerosis. Oxidative stress generates by dys-regulated redox balance between ROS producing systems and antioxidant systems. Also, Curcumin (Cur) as a main part of tur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endothelium : journal of endothelial cell research
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2004